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Abstract

In order to better understand the strengthening mechanism observed in nacre, we have developed

an interface computational model to simulate the behavior of the organic present at the interface

between aragonite tablets. In the model, the single polymer-chain behavior is characterized by the

worm-like-chain (WLC) model, which is in turn incorporated into the eight-chain cell model

developed by Arruda and Boyce [Arruda, E.M., Boyce, M.C., 1993a. A three-dimensional

constitutive model for the large stretches, with application to polymeric glasses. Int. J. Solids Struct.

40, 389–412] to achieve a continuum interface constitutive description. The interface model is

formulated within a finite-deformation framework. A fully implicit time-integration algorithm is used

for solving the discretized governing equations.

Finite element simulations were performed on a representative volume element (RVE) to

investigate the tensile response of nacre. The staggered arrangement of tablets and interface waviness

obtained experimentally by Barthelat et al. [Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.-M.,

Espinosa, H.D., 2007. On the mechanics of mother-of-pearl: a key feature in the material hierarchical

structure. J. Mech. Phys. Solids 55 (2), 306–337] was included in the RVE simulations. The

simulations showed that both the rate-dependence of the tensile response and hysteresis loops during

loading, unloading and reloading cycles were captured by the model. Through a parametric study,

the effect of the polymer constitutive response during tablet-climbing and its relation to interface

hardening was investigated. It is shown that stiffening of the organic material is not required to

achieve the experimentally observed strain hardening of nacre during tension. In fact, when ratios of

contour length/persistent length experimentally identified are employed in the simulations, the

predicted stress–strain behavior exhibits a deformation hardening consistent with the one measured

experimentally and also captured by the phenomenological cohesive model used in the study carried

out by Barthelat et al. [Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.-M., Espinosa, H.D., 2007. On
see front matter r 2007 Elsevier Ltd. All rights reserved.
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the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys.

Solids 55 (2), 306–337]. The simulation results also reveal that the bulk modulus of the polymer

controls the rate of hardening, feature not captured by more simple cohesive laws.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nacre is composed of a ‘‘brick-and-mortar’’ microstructure of �95 vol% mineral
(aragonite, the bricks) and �5 vol% protein-rich organic material (the mortar). The
mineral is very brittle and unsuitable as a structural material. Amazingly, nacre can still
sustain significant inelastic deformation and exhibit toughness 20–30 times that of
aragonite. The superior properties of nacre are mainly attributed to its hierarchical
microstructure, which has developed through millions of years of evolution and natural
selection. Within this hierarchy, large aspect-ratio mineral tablets are closely stacked in a
staggered alignment and organic material acts as an adhesive gluing the tablets together.
Understanding the structure–property relationship of nacre based on these features has
been the subject of considerable research within the mechanics community because of its
relevance in the design of new synthetic materials. A great number of experiments and
simulations (Currey, 1977; Jackson et al., 1988; Menig et al., 2000; Wang et al., 2001;
Barthelat et al., 2006, 2007) have been conducted using a variety of experimental
techniques and numerical models to elucidate the deformation mechanisms present in
nacre. From these studies it is believed that the interface behavior holds the key to the
material outstanding properties (Wang et al., 2001; Ji and Gao, 2004; Barthelat et al., 2006,
2007). In this regard, the organic material appears to be responsible for the strong strain
rate sensitivity and viscoplasticity exhibited by nacre (Currey, 1977; Menig et al., 2000).
Nanoscale asperities on the tablet surfaces were shown to provide resistance to inter-
lamellar sliding and to strengthen the material (Evans et al., 2001; Wang et al., 2001).
Clearly, detailed modeling of the interface behavior of nacre is crucial, but it presents
particular challenges. There are difficulties associated with the description of the
constitutive behavior of the organic material, which is subjected to strong confinement
resulting from the small interlayer thickness between relatively rigid mineral tablets.
Handling of surface topology at the interface also presents some challenges.

Katti et al. (2001) simulated the material response of nacre using a three-dimensional
(3D) finite element model. In their model, the organic interlayer was simulated using
continuum elements within the context of the conventional J2 plasticity theory. The model
was phenomenological, and the polymer deformation behavior of the organic material was
not accounted for.

The deformation behavior of the organic material (proteins) was investigated in a series of
axial force–extension experiments conducted by Smith et al. (1999). Irregular ‘‘saw-tooth’’
type force–displacement curves were identified in the experiments. The response was
attributed to the sequential force-induced unfolding of the Lustrin A protein. Qi et al. (2005)
proposed a hyperelastic model intended to capture the special mechanical behavior exhibited
by the Lustrin A protein. Their numerical simulations of tensile extension of representative
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volume elements (RVEs) of nacre showed that the progressive unfolding of molecules in the
organic matrix contributed to macroscopic softening, ensuring larger deformations without
catastrophic failure. In Ji and Gao (2004), the organic matrix was simulated using the virtual
internal bond (VIB) model to investigate fracture behavior. The effects of surface topology at
interface were ruled out in these models. In Barthelat et al. (2006, 2007), the surface waviness
of tablets were explicitly simulated to capture the effects of surface topology on the
mechanical behavior of nacre. In their model, a rate-independent interface constitutive law
(Camacho and Ortiz, 1996; Espinosa and Zavattieri, 2003) was used to characterize the
mechanical behavior of the organic material. It was shown that the microscopic waviness of
the tablets was a key to progressive tablet locking and local hardening, a fundamental
requirement for the spreading of deformations over large volumes.
In order to better understand the experimental findings and clarify the roles of structure

and material constituents in the mechanical behavior of nacre, there is a need to develop
accurate and robust numerical models for this material. For instance, hardening of the
biopolymer at large strains and its viscoplastic response need to be accurately modeled. In
addition, the effects of stress triaxiality on the interface behavior are generally ruled out in
the conventional cohesive zone methods (Tvergaard and Hutchinson, 1992; Xu and
Needleman, 1994). We believe that this effect may be important and should be accounted
for to better understand the mechanical behavior of nacre and the underlying mechanisms.
In the present study, we propose an interface model motivated by the relevant

micromechanisms controlling the deformation behavior of the organic material in nacre.
The interface model is intended to simulate the polymer deformation behavior for a finite
interface thickness. The organic interlayer of nacre is assumed to behave like amorphous
biopolymers, gluing mineral tablets together. In this regard, we treat the elasto-viscoplastic
behavior of the organic material in a unified manner through constitutive modeling. The
constitutive description used here is similar to the one widely used for glassy polymers
(Parks et al., 1984; Arruda and Boyce, 1993b; Wu and van der Giessen, 1993). Unlike
polymer chains in rubber-like materials, which have an uncorrelated nature represented by
the freely-jointed-chain (FJC) model (Arruda and Boyce, 1993a), biological chains are
generally considered correlated with a smoother chain configuration. We use the worm-
like-chain (WLC) model (Oberhauser et al., 1998; Bao and Suresh, 2003; Kuhl et al., 2005)
to simulate the single-chain behavior of polymeric fibrils in the organic material of nacre.
The single-chain behavior is incorporated into the Arruda–Boyce eight-chain model
(Arruda and Boyce, 1993a) to obtain a continuum constitutive description.
This paper is organized as follows. In Section 2, we discuss the principle of virtual work for

an RVE of nacre within the framework of finite deformation. In Section 3, we describe the
constitutive formulations for the organic material. The numerical implementation of the
interface model is elaborated in Section 4. In Section 5, we conduct a parametric study for the
WLC model to show the effect of model parameters on the material response. In Section 6,
we demonstrate the predictive capabilities of the interface model in simulating the mechanical
behavior of nacre. Their relevance to strengthening mechanisms is highlighted. In Section 7,
we conclude with final remarks and future studies on the interface model.

2. Interface model within the framework of finite deformation

The ‘‘brick-and-mortar’’ structure of nacre is illustrated in Fig. 1. In this structure, the
organic interlayer (approximately 20–50 nm thickness) serves as a polymer adhesive
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between individual tablets (0.2–0.5 mm thick). For such two-phase composite material in
equilibrium, the principle of virtual work is written in the formZ

BI
0

P : d _F dV þ

Z
BO
0

P : d _F dV �

Z
qBt

0

T � dvdS �

Z
B0

B � dvdV ¼ 0, (1)

where P is the first Piola–Kirchhoff stress, d _F the virtual rate of deformation gradient, T
and B are the externally applied tractions and body forces defined on the reference
configuration, respectively, and dv is the virtual velocity. Furthermore, the integration
domain is B0 with qB0

t the external surface area over which the external tractions are
applied, both defined in the reference configuration. In Eq. (1), B0 consists of two parts, B0

I

and B0
o, representing the total volume of the inorganic tablets and the organic matrix,

respectively.
In formulating the interface model, we start from the internal virtual work associated to

the organic matrix, viz.,

dW Inter ¼

Z
BO
0

P : d _F dV . (2)

In Fig. 2, a 2D microstructure of nacre as represented by a two-phase composite is
illustrated. The interlayer thickness, H, is assumed to be uniform as shown in the plot.
Generalization to a variable thickness is trivial within the framework of finite elements as
will be illustrated later. Since the thickness of the interlayer is much smaller than that of the
mineral tablets, the deformation through the thickness of the interlayer is assumed to be
uniform. In addition, the in-plane transverse deformation of the interface material is
constrained due to the confinement of the interlayer material between relatively rigid
Fig. 1. Sketch of nacre ‘‘brick and mortar’’ microstructure. The mineral tablets are embedded in an organic

matrix.

H
n0 u

+

u
-

Fig. 2. A 2D illustration of the microstructure of nacre. u+ and u� refer to the displacements on the top and

bottom surfaces of the interlayer, respectively. The normal to the interface is n0, defined on the reference

configuration. The thickness of the interlayer is denoted by H.
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tablets. The deformation gradient of the interlayer is therefore taken to have the form

F ¼ I þ
D� n0

H
, (3)

where I is the identity tensor, n0 the outer normal of bottom surface S� pointing to the top
surface S+ defined on the reference configuration, and D ¼ u+�u� is the displacement
difference across the interlayer (see Fig. 2). Combining Eqs. (2) and (3), the internal virtual
work of the organic matrix is expressed as

dW Inter ¼

Z
BO
0

P :
d _D� n0

H
dV ¼

Z
G0

Td _DdG0, (4)

where T ¼ P � n0 is the traction on the bottom surface S� with the undeformed area G0.
The interface model as represented by Eq. (4) is implemented as a user-defined interface
element within the commercial FEM code ABAQUS (2004). In contrast to conventional
interface models, which generally use phenomenological traction-separation relations, we
consider the elasto-viscoplastic behavior of the organic material in a unified manner
through constitutive modeling. More details on the constitutive modeling are discussed in
the subsequent section.
The thickness of the interface element in the numerical implementation is taken to be

zero. Instead, the interlayer thickness, H, is treated as an intrinsic material parameter
which is included in the constitutive laws. To prevent interpenetration between top and
bottom surfaces of the interface element, we use the penalty method with the constraint
condition, D̂nX� Dcr, where D̂n is the normal separation of the interface element and Dcr is
a critical displacement jump controlling the deformation level at which interface
compression is allowed. In this manner, the effect of interface compliance on the
mechanical behavior of nacre is accounted for. Suitable choices for Dcr will be discussed
later. According to this approach, the internal virtual work of the organic matrix for
D̂np� Dcr, is expressed as

dW Inter ¼

Z
qBO

0

T � d _DdG0 þ

Z
qBO

0

K D̂n þ Dcr

� �
� d _̂Dn dG0, (5)

where K is the penalty number.
The climbing of tablets during tension or shear parallel to tablet planes is a salient

feature of the deformation behavior of nacre associated with its morphological structure.
Hence, it is crucial to accurately model this deformation behavior in order to elucidate the
strengthening mechanisms present in nacre. In this regard, the penalty method ensures that
tablet climbing associated with the relative sliding between overlapped wavy tablets is
effectively modeled.
3. Interface constitutive formulations

Nacre exhibits significant strain rate sensitivity and viscoplasticity. This is mainly
attributed to the polymer deformation behavior of the organic matrix. Here, we use an
elasto-viscoplastic constitutive model to characterize the mechanical behavior of the
organic material. In the constitutive descriptions, the WLC model is incorporated through
the definition of a back stress to reflect the effects of polymer stiffening with increased
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deformation. This has been motivated by the work of Parks et al. (1984) and Arruda and
Boyce (1993b). In their studies, the FJC model was considered.

3.1. Kinematics

The deformation gradient, F, is multiplicatively decomposed into an elastic part Fe and a
plastic part Fp with the form

F ¼ FeFp. (6)

The elastic part of the deformation gradient is written as

Fe ¼ ReUe ¼ VeRe, (7)

where Re is the elastic rotation tensor, Ue the right elastic stretch tensor, and Ve the left
elastic stretch tensor. The logarithmic elastic strain is defined as E

e

ð0Þ ¼ ln Ue. Similarly, for
the plastic part of the deformation gradient, we have

Fp ¼ RpUp ¼ VpRp, (8)

where Rp is the plastic rotation tensor, Up the right plastic stretch tensor, and Vp the left
plastic stretch tensor. Furthermore, bp

¼ FpFpT
¼ (Vp)2 is the plastic left Cauchy–Green

deformation tensor. The plastic velocity gradient, L
p
, which is defined on the intermediate

configuration, takes the form

L
p
¼ D

p
þW

p
¼ _F

p
Fp�1, (9)

where D
p
and W

p
are the plastic rate of deformation and the plastic spin defined on the

intermediate configuration, respectively. The velocity gradient, l, defined in the current
configuration is

l ¼ _FF
�1
¼ d þ w ¼ _F

e
Fe�1 þ FeL

p
Fe�1, (10)

where d ¼ 1/2(l+lT) is the rate of deformation and w ¼ 1/2(l�lT) is the spin. With the
assumption W

p
¼ 0 (Weber and Anand, 1990), the rate of deformation is further written as

d ¼ de
þ sym FeD

p
Fe�1

� �
, (11)

where

de
¼ 1=2 _F

e
Fe�1 þ Fe�T _F

eT
� �

. (12)

3.2. Constitutive descriptions within a finite-deformation framework

It is postulated that there exists a Helmholtz free-energy function defined per unite
reference volume which takes the non-interactive form (Anand and Gurtin, 2003)

C E
e

ð0Þ; b
p

� �
¼ Ce E

e

ð0Þ

� �
þCpðbp

Þ, (13)

where Ce is an elastic free energy and Cp is a plastic free energy. For the isothermal process,
the Clausius–Duhem dissipation inequality is taken to have the form (Holzapfel, 2000)

s : d � _C E
e

ð0Þ; b
p

� �
X0, (14)
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where s is the Kirchhoff stress and

_C E
e

ð0Þ; b
p

� �
¼

qCe

qE
e

ð0Þ

: _̄E
e

ð0Þ þ 2
qCp

qbp bp : D
p
. (15)

Combining Eqs. (11), (14) and (15), it is shown that the dissipation inequality has the form

ReTsRe : ReT deRe �
qCe

qE
e

ð0Þ

: _̄E
e

ð0Þ

( )
þ FeTsFe�T � 2

qCp

qbp bp

� �
: D

p
X0. (16)

With the assumption that the elastic stretch is small in the sense that Ue¼
:

I , where I is the
second-order identity tensor, we have (Lubarda, 2002)

_̄E
e

ð0Þ¼
:

ReTdeRe (17)

and

s ¼ ReTsRe¼
:

FeTsFe�T . (18)

We define back stress as (Anand and Gurtin, 2003)

B ¼ 2
qCp

qbp bp. (19)

Noting that D
p
is a deviatoric tensor, we therefore rewrite Eq. (16) as

s�
qCe

qE
e

ð0Þ

 !
: _̄E

e

ð0Þ þ s0 � B
0

� �
: D

p
X0, (20)

where s0 ¼ s� ð1=3ÞtrðsÞI , and B
0
¼ B � ð1=3ÞtrðBÞI are the deviatoric parts of s and the

back stress, B, respectively. To ensure the inequality, we have

s ¼
qCe

qE
e

ð0Þ

(21)

and the evolution relation for plastic strain is defined as

D
p
¼ _gN , (22)

where _g is the plastic shear rate, and

N ¼
s0 � Bffiffiffi

2
p

s
(23)

with teff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

s0 � B
0

� �
: s0 � B

0
� �r

, is the tensorial direction of plastic flow. In the present

study, the plastic shear rate is assumed to take the power-law form

_g ¼ _g0
teff
s

� �1=m

, (24)

where m is the material rate sensitivity constant, with m ¼ 0 denoting the rate-independent
limit, s is the flow resistance to the deformation of the organic material which is taken to be
constant in the study conducted here, and _g0 is the reference shear rate.
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We define the elastic free energy as

Ce E
e

ð0Þ

� �
¼ 1

2
E

e

ð0Þ : L : E
e

ð0Þ, (25)

where L is the fourth-order isotropic elastic modulus which has the form

L ¼ 2mII þ ðk � 2=3mÞI � I ; (26)

where II is the fourth-order symmetric identity tensor, m the elastic shear modulus, and k

the elastic bulk modulus. As a result, the constitutive equation for stress takes the form

s ¼ L : E
e

ð0Þ. (27)

3.3. Macroscopic plastic free energy

In this study, the back stress is determined by the accumulated plastic stretch, Vp,
reflecting the orientation-dependent strain hardening of the organic material as the
polymer chains tend to align along the directions of the largest plastic stretch (Arruda and
Boyce, 1993b). Here, the mechanical behavior of a single biopolymer chain is incorporated
into the overall constitutive description of the organic material according to the
Arruda–Boyce eight-chain model (Arruda and Boyce, 1993a; Bischoff et al., 2002; Kuhl
et al., 2005). This is essentially a non-affine model with the assumption that the eight-chain
unit cell is instantaneously aligned with the directions of principal stretches once
deformation is applied.

Proteins have been shown to be important load-carrying components of the organic
material in nacre (Smith et al., 1999). In the study of biological materials, the WLC model
is often used to characterize the mechanical behavior of a single protein molecule (Bao and
Suresh, 2003). The parameters used in the WLC model include the contour length, Lc, and
the persistence length p. The contour length, Lc, is the length of chains at full extension,
and plays significant roles on the entropic elasticity behavior of single molecules. The
persistence length is understood as the sum of the average projection of all bonds onto the
direction of the first bond. The force–stretch relation for a single wormlike chain is usually
taken to have the form (Marko and Siggia, 1995)

f WLC
ðrÞ ¼

ky
4p

4
r

Lc
þ

1

1� r=Lc

� �2 � 1

" #
, (28)

where r is the end-to-end distance of a single chain. By integrating the force about r, it is
easy to show that the free energy of a single WLC has the form

cðrÞ ¼
kyLc

4p
2

r2

L2
c

�
r

Lc
þ

1

1� r=Lc

" #
þ c0, (29)

where c0 corresponds to the contribution from the initial entropy of the molecule. Based
on the Arruda–Boyce 8-chain cell model, the I1

p-based plastic free energy for the organic
material is shown to take the form

CpðI
p
1Þ ¼

mRL
4

4
l2chain
L
� lchain

ffiffiffiffi
2

L

r
þ

1

1� lchain
ffiffiffiffiffiffiffiffiffi
2=L

p" #
þC0, (30)
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where L ¼ Lc/p, lchain ¼
ffiffiffiffiffiffiffiffiffiffi
I

p
1=3

p
is the stretch of each chain in the 8-chain unit cell,

mR ¼ nky with n the chain density, k the Boltzmann’s constant, and y the temperature, and
C0 ¼ nc0. Here, the undeformed length of each chain in the 8-chain cell is taken to be
r0 ¼

ffiffiffiffiffiffiffiffiffiffi
2Lcp
p

for the WLC model (Marko and Siggia, 1995; Bischoff et al., 2002). According
to the definition, we must have LX2, otherwise the undeformed chain length will be
greater than the contour length. The locking stretch at full extension of chains can be
defined as lL ¼ Lc/r0, which is equal to

ffiffiffiffiffiffiffiffiffi
L=2

p
.

4. Time-integration procedure

4.1. Time-integration procedure of interface constitutive equations

It is assumed that a series of variables, sðtÞ, B
0
ðtÞ and Fp(t), are known at time t. For

given F(t) at time t ¼ t+Dt, we need to find s tð Þ,B
0
tð Þ and Fp(t). Integrating Eq. (9), we

have

FpðtÞ ¼ exp DtD
p
ðtÞ

� �
FpðtÞ, (31)

where D
p
ðtÞ ¼ _g sðtÞ;BðtÞ

� �
NðtÞ. The elastic part of the deformation gradient, Fe(t), is

obtained by

FeðtÞ ¼ Fe
tr exp �DtD

p
ðtÞ

� �
, (32)

where Ftr
e
¼ F(t)Fp(t)�1 is a trial value of the elastic part of the deformation gradient. As

shown in Weber and Anand (1990), the elastic strain at time t is updated as

E
e

ð0Þ tð Þ ¼ E
e

tr � DtD
p
tð Þ, (33)

where E
e

tr ¼ lnUe
tr, with Ue2

tr ¼ FeT
tr Fe

tr, is the trial elastic strain. Combining Eqs. (33) and
(27), the stress update at time t takes the form

sðtÞ ¼ str � L : DtD
p
ðtÞ

	 

¼ str � L : Dt_g sðtÞ;B

0
ðtÞ

� �
NðtÞ

h i
, (34)

where

str ¼ L : E
e

tr. (35)

The deviatoric part of the back stress is updated as

B
0
ðtÞ ¼ P : 2

qCp I
p
1ðtÞ

� �
qI

p
1

bp
ðtÞ, (36)

where P ¼ II � ð1=3ÞI � I is the fourth-order deviatoric tensor.
Eqs. (34) and (36) are expressed in their residual forms as

R1 sðtÞ;B
0
ðtÞ

� �
¼ sðtÞ � str þ L : Dt_g sðtÞ;B

0
ðtÞ

� �
NðtÞ

h i
(37)

and

R2 sðtÞ;B
0
ðtÞ

� �
¼ B

0
ðtÞ � P : 2

qCp I
p
1ðtÞ

� �
qI

p
1

bp
ðtÞ, (38)
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respectively. A generic Newton–Raphson method is used to solve the equations

R1 sðtÞ;B
0
ðtÞ

� �
¼ 0;

R2 sðtÞ;B
0
ðtÞ

� �
¼ 0:

8><>: (39)

During the iteration a of a Newton–Raphson procedure, the following linear system is
solved:

sðtÞ

B
0
ðtÞ

" #aþ1
¼

sðtÞ

B
0
ðtÞ

" #a
� Ga
ðtÞ�1 :

R1ðtÞ

R2ðtÞ

" #a
, (40)

where

Ga
ðtÞ ¼

II þ L : N � qDg
qs þ

qN
qs Dg

� �
L : N � qDg

qB
0 þ

qN

qB
0 Dg

� �
�2P : bp

�
qF I

p

1ð Þ
qs þ F I

p
1

� �
qbp

qs

� �
II � 2P : bp

�
qF I

p

1ð Þ

qB
0 þ F I

p
1

� �
qbp

qB
0

� �
264

375
a

(41)

with F I
p
1

� �
¼ qCp I

p
1ðtÞ

� �� ��
qI

p
1, and Dg ¼ Dt_g saðtÞ;B

0a
ðtÞ

� �
, where the superscript a refers

to the values at the end of the iteration procedure a. The derivatives in Eq. (41) are readily
obtained, noting that both I1

p(t) and bp(t) are functionally dependent on Dg which is a
function of sðtÞ and B

0
ðtÞ in terms of Eq. (24). From Eqs. (23) and (24), we have

qDg tð Þ
qs
¼

qDg
qteff
�
qteff
qs
¼

ffiffiffi
2
p

2

Dg tð Þ
mtaeff tð Þ

N
a
tð Þ (42)

and

qDg tð Þ

qB
0 ¼

qDg
qteff
�
qteff
qB
0 ¼ �

ffiffiffi
2
p

2

Dg tð Þ
mtaeff tð Þ

N
a
tð Þ. (43)

The derivatives of NðtÞ with respect to sðtÞ and B
0
ðtÞ take the form

qN tð Þ
qs
¼

P�N
a
tð Þ �N

a
tð Þffiffiffi

2
p

taeff tð Þ
(44)

and

qN

qB
0 ¼
�II þN

a
tð Þ �N

a
tð Þffiffiffi

2
p

t̄aeff tð Þ
(45)

respectively. We have

qF I
p
1ðtÞ

� �
qs

¼
qF I

p
1

� �
qI

p
1

qI
p
1

qDg
�
qDg
qs

(46)

and

qF I
p
1

� �
qB
0 ¼

qF I
p
1

� �
qI

p
1

qI
p
1

qDg
�
qDg

qB
0 , (47)
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where the derivative of I1
p(t) with respect to Dg takes the form

qI
p
1ðtÞ

qDg
¼ 2I : N

a
ðtÞ � bp

ðtÞ � I þ DgN
a
ðtÞ

� �� �
. (48)

In Eq. (41), the derivatives of bp(t) with respect to s and B
0
take the form

qbp

qs
¼

qbp

qDg
�

qDg
qs

(49)

and

qbp

qB
0 ¼

qbp

qDg
�

qDg

qB
0 , (50)

respectively, with

qbp
ðtÞ

qDg
¼ N

a
ðtÞ � bp

ðtÞ � I þ DgN
a
ðtÞ

� �
þ I þ DgN

a
ðtÞ

� �
� bp
ðtÞ �N

a
ðtÞ. (51)

After obtaining sðtÞ and B
0
ðtÞ from solving Eq. (40), the plastic part of the deformation

gradient, Fp, is updated. The elastic part of the deformation gradient Fe(t) ¼ F(t) �Fp(t)�1

is then calculated. The interface traction defined in the reference configuration is obtained
noting

TðtÞ ¼ PðtÞ � n0 ¼ ReðtÞ � sðtÞ � ReðtÞT � FðtÞ�T
� n0. (52)

4.2. Linearization of interface virtual work

The tangent stiffness matrix of the interface element is obtained by the linearization of
Eq. (4), which is expressed as

d dW INTER
� �

¼

Z
G0

dP � n0 � d _DdG0, (53)

where dP takes the form

dP ¼ dRe � s � ReT

� F�T þ Re � ds � ReT

� F�T

þ Re � s � dReT

� F�T þ Re � s � ReT

� dF�T . ð54Þ

To complete the linearization in Eq. (53), both dRe and ds need to be obtained.
Combining Eqs. (34) and (35), we have

dsðtÞ ¼ L : dE
e

tr � L : d DgNðtÞ
	 


. (55)

After taking the derivatives, it is shown that Eq. (55) has the form

A : ds ¼ L : dE
e

tr þ L : N �N
� � ffiffiffi

2
p

2

Dg
mteff

�
�II þN �Nffiffiffi

2
p

teff
Dg

 !
: dB

0
, (56)

where

A ¼ II þ L : N �N
� � ffiffiffi

2
p

2

Dg
mteff

þ L :
P�N �Nffiffiffi

2
p

teff
Dg. (57)
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The second term on the right-hand side of Eq. (56) is shown to be the same order as
(Dg)2. For the sake of simplicity, this term was neglected in the calculations. As a result, we
used a continuum tangent operator instead of a consistent tangent operator in the
calculations conducted here. It is emphasized that the approximation may affect the
convergence rate but not the accuracy. Eq. (56) is rewritten as

ds¼
:

A�1 : L : dE
e

tr, (58)

where A�1 is a fourth-order tensor which satisfies A�1 : A ¼ II . It is shown that A�1 takes
the form

A�1 ¼
1

1þ b1
II �

b2
ð1þ b1Þð1þ b2 þ b1Þ

N �N þ
b1

3ð1þ b1Þ
I � I , (59)

where b1 ¼
ffiffiffi
2
p

m Dg
teff

and b2 ¼
ffiffiffi
2
p

m 1
m
� 1

� � Dg
teff
. In the calculations conducted here, the

differential dE
e

tr takes the approximate form for the sake of simplicity

dE
e

tr _¼ReT
tr dDRe

tr, (60)

where dD ¼ 1
2
ðqdu=qxÞ þ qT du=qxÞ
� �

with du the displacement increment and x the

current position, and Rtr
e is the trial elastic rotation tensor. In Eq. (54), the differential dRe

takes the form (Weber and Anand,1990)

dRe _¼dFe
trU

e�1
tr � Re

trsym Ue�1
tr sym FeT

tr dFe
tr

� �	 

Ue�1

tr . (61)

5. Parametric study of the interface model

In this section, the effects of material parameters characterizing the interface model are
evaluated. For simplicity, a two-layer structure is modeled with a single 6-node interface
element between two 6-node prism continuum elements. The 3D structure is described in
Fig. 3. The thickness of each continuum element is h/2. Both simple shear and uniaxial
tension in the direction tangential and perpendicular to the interface, respectively, are
uT

Elasto-viscoplastic
interlayer

uN

h

Fig. 3. Sketch of a two-layer composite material with the interface modeled by a 6-node interface element. Top

and bottom layers are simulated by 6-node continuum elements. uN and uT denote the displacements in the

direction perpendicular and parallel to the interface, respectively.
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performed on the structure. In Fig. 3, uN and uT represent the displacements in the normal
and tangential directions, respectively. Since the interface constitutive model is essentially
isotropic, the material response under the simple shear condition is independent of the in-
plane shear direction. In the calculations conducted here, a tablet thickness h ¼ 0.485 mm is
used. Unless specified otherwise, the thickness of the interlayer is held fixed to
H ¼ 0.035 mm. The bulk material in the structure is taken to be purely elastic with the
same transversely isotropic elastic constants as those for the mineral tablets of nacre. The
five elastic constants are the Young’s modulus and Poisson ratio in the x–y symmetry
plane, EP ¼ 106GPa and nP ¼ 0.3, the Young’s modulus and Poisson ratio in the z-
direction, EZ ¼ 82GPa and nZP ¼ 0.06, and the shear modulus in the z-direction,
GZP ¼ 33.45GPa (Barthelat et al., 2006, 2007). An elastic shear modulus of m ¼ 1.0GPa is
used for the interface material. The viscoplastic parameters used for the modeling include
the reference shear rate _g0 ¼ 0:01, and the rate sensitivity m ¼ 0.1.
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Fig. 4. Normalized shear force–displacement curves for (a) varying L ¼ Lc/p with mR ¼ 0.2MPa, (b) varying mR
with L ¼ 40.0, and (c) varying the interlayer thickness, H, with L ¼ 40.0 and mR ¼ 0.2MPa.
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5.1. Shear response

The effect of L, which is the ratio of the contour length to the persistent length in the
WLC model, on the shear response of the structure is illustrated in Fig. 4(a). The
displacement rate is taken to be _uT=h ¼ 0:001 s�1. In Fig. 4(a), the curves are plots of the
shear force normalized by the undeformed interface area A0, i.e., tsh ¼ FT/A0, versus the
normalized displacement, gsh ¼ uT/h, for L ¼ 10, 20 and 40. The hardening modulus, mR, is
held fixed with a value of 0.2MPa. As shown in Fig. 4(a), the flow resistance after yielding
increases with the decrease of L. This is reasonable since a single wormlike chain is
typically stiffer for a larger value of the persistence length. For an infinitely stiff wormlike
chain, the persistence length is equal to its contour length. As the interface shear
deformation increases such that the locking stretch, lL ¼

ffiffiffiffiffiffiffiffiffi
L=2

p
, is approached, significant

stiffening is observed. Fig. 4(b) illustrates the effects of mR on the interface behavior. The
value of L is fixed at 40 in these calculations. The response curves for mR ¼ 0.2, 0.4 and
0.8MPa are displayed. As expected, the shear strength increases with increasing mR. The
normalized shear force–displacement curves for H ¼ 0.03, 0.035 and 0.04 mm are displayed
in Fig. 4(c). As shown in this plot, the interlayer thickness plays an important role on the
overall response of the structure under shear. The layered structure becomes stiffer with
the decrease of the interlayer thickness. Furthermore, the shear displacement required for
achieving locking decreases with decreasing interlayer thickness.

5.2. Tensile response

The tensile response of the layered composite subjected to uniaxial tension in the
direction perpendicular to the interface is shown in Fig. 5. In this plot, the normalized
Normalized Displacement, uN / h
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Fig. 5. Normalized normal force–displacement curves revealing the effects of the bulk modulus of the interface

material on the material response when loaded in the direction perpendicular to the interface.
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normal force–displacement curves for the elastic bulk modulus k ¼ 2000, 1000 and 0MPa
are displayed. It is shown that the bulk modulus plays an important role on the tensile
response. With increasing bulk modulus, the tensile response curves exhibit a trend of
increasing stiffness. This is related to the increase of stress triaxiality with the increase of
bulk modulus. The interface material can become quite stiff as the inelastic deformation is
suppressed in the presence of high stress triaxiality. In one of these three cases, we
completely remove the stress triaxiality in the interface material by taking k ¼ 0. As
indicated by the bottom curve in Fig. 5, the material response exhibits softening, feature
not observed in the cases of non-zero bulk modulus.

6. Application to nacre

In this section, finite element simulations are performed on an RVE of nacre subjected to
uniaxial tension. The RVE represents a two-phase composite of nacre consisting of mineral
tablets embedded in an organic matrix. The organic material between tablets is simulated
using the elasto-viscoplastic interface model discussed in the previous sections, while the
tablets are assumed to be purely elastic with in-plane transverse isotropy. The finite
element mesh used in this study is the same as that in Barthelat et al. (2006, 2007).

6.1. Finite element model for the RVE of nacre

In Fig. 6(a), the RVE in a 2D structure of nacre is indicated. In the modeling, the
symmetry condition about the middle plane of the illustrated RVE under uniaxial tension
RVE
y

z

x

Fig. 6. (a) Sketch of the 2D structure of nacre. The RVE used in the simulations is indicated by the part between

the dashed lines. Symmetry about the middle plane (x–y plane) is assumed during tension such that only one-half

of the RVE needs to be modeled. (b) 3D RVE consisting of two layers of tablets, generated from the real structure

of nacre. The tablets are modeled using continuum solid elements, and the interlayer is simulated using interface

elements.
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parallel to the x–y plane is assumed. As a result, only one half of the RVE needs to be
modeled. As illustrated in Fig. 6(b), the finite element model of the RVE, consisting of two
layers of tablets in half-thickness connected by the organic material, was directly generated
from the real structure of nacre using image analysis techniques. The interface material is
simulated using interface elements. More details on the generation of the finite element
mesh were discussed by Barthelat et al. (2007). The plane area of the RVE is 72 mm �
78 mm with a thickness of 0.485 mm. Each layer in the RVE contains over 150 tablets
ensuring that the microstructure statistics of nacre are reflected in the simulations.

Periodic boundary conditions are imposed on the RVE. Accordingly, the tractions are
opposite on opposite sides of the boundary of RVE, implying anti-periodicity, and the
displacement on the boundaries has the form

u ¼ ðF � IÞX þ eu, (62)

where u is the boundary displacement corresponding to position X,

F ¼
1

V0

Z
B0

F dV

is the volume average of the deformation gradient, F, over the undeformed configuration
B0, and eu is the disturbance of boundary displacement, which is periodic. It is easy to show
that

P : _F ¼
1

V 0

Z
B0

P : _F dV , (63)

where

P ¼
1

V0

Z
B0

P dV

is the volume average of the first Piola–Kirchhoff stress over the undeformed

configuration, under periodic boundary conditions. The terms, _̄F and _F, denote the rates

of F and F, respectively. This implies that P is work conjugate with F. The macroscopic

Cauchy stress or overall stress is defined by r ¼ P F
T
.

J with J ¼ detF. In the finite

element analysis, the periodic boundary conditions are expressed by using the constraint

uA � uB ¼ ðF � IÞðXA � XBÞ, (64)

where uA and uB denote boundary displacements at two periodic image boundary positions
XA and XB, respectively.

We simulate the deformation of the RVE under uniaxial tension conditions by applying
the time-dependent deformation gradient

FðtÞ ¼ l1ðtÞe1 � e1 þ l2ðtÞe2 � e2 þ l3ðtÞe3 � e3, (65)

where e1, e2 and e3 are Cartesian basis vectors, and liji¼1;3 are macroscopic principal
stretches. Initial conditions are F ¼ I , with I the identity tensor, at t ¼ 0, corresponding to
the undeformed state. We take l1ð2ÞðtÞ ¼ expð_�tÞ, with _� the applied strain rate, while l2ð1Þ
and l3 are left free, corresponding to the uniaxial tension in the X1(X2) direction.
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6.2. Rate-independent interface damage model

Under tension parallel to the tablet plane (x–y plane), the organic material between
vertical walls at tablet junctions has to sustain much larger tensile deformation than that
between tablet planes. Due to strong constraints to the tensile deformation of the organic
material, as imposed by the tablets, high stress triaxiality arises in the organic interlayer.
This is responsible for ligament formation and fibril breakage. These damage effects are
not included in the present elasto-viscoplastic interface model. Hence, to account for this
effect the organic material between vertical walls at tablet junctions is modeled using a
phenomenological irreversible cohesive law (Barthelat et al., 2007).
The interface material between the vertical walls at tablet junctions is assumed to resist

both opening and sliding of tablets. We define the interface traction as

T ¼
D

Deff
T eff , (66)

where Deff ¼
ffiffiffiffiffiffiffiffiffiffi
D � D
p

is the effective displacement jump, and Teff is the effective interface
traction. Here Teff is taken to have the forms

T eff ¼
Deff

dc1
Tmax; Deffpdc1, (67)

Teff ¼ Tmax; dc2XDeff4Deff
maxXdc1;

Teff ¼ Tmax D
eff

Deff
max

; dc2XDeff
max4Deff

8><>: (68)

and

Teff ¼
dc � Deff

dc � dc2
Tmax; dc4Deff4Deff

max4dc2;

Teff ¼ 1�
Deff
max

dc

� �
Tmax D

eff

Deff
max

; dc4Deff
max4Deff ;

8>>>><>>>>: (69)

where dc1, dc2 and dc are the characteristic opening displacements, and Tmax is the
maximum effective traction as indicated in Fig. 7. The variable Deff

max is a state variable
tracking the maximum achieved opening displacement. According to Eqs. (66)–(69),
damage effects are included after Deff4dc1. As described in Fig. 7, both the effective
traction and the opening displacement tend to return to the origin along a linear path in
the presence of unloading. In the simulations we use Tmax

¼ 20MPa, dc ¼ 600 nm,
dc1 ¼ 0.36 nm, and dc2 ¼ 270 nm (Barthelat et al., 2007). For a justification on the choice of
these parameters see Barthelat et al. (2007).

6.3. Parameters characterizing the elasto-viscoplastic interface model

In the WLC model, one of the important parameters controlling the stiffening behavior
of a single polymer chain is the ratio of the contour length to the persistence length,
L ¼ Lc/p. Progressive unfolding of proteins in the organic material of nacre is expected. As
a result, the contour length, Lc, typically evolves with increasing length. To a first
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approximation, the unfolding mechanism is not included in the present interface model but
its effect is investigated parametrically. From the experimentally obtained force–extension
curves for the organic material of nacre (Smith et al., 1999), it is estimated that the initial
contour length corresponding to the occurrence of the first unfolding of a protein chain is
about 16 nm. The persistent length is taken to be p ¼ 0.4 nm (Qi et al., 2005). Hence, the
value of L ¼ Lc/p for the protein chain in the organic material of nacre is estimated to be
at least 40. The hardening modulus mR ¼ nky in the WLC model (Eq. (30)) was fitted to
experimentally measured tensile stress–strain curves.

The parameters characterizing the elastic properties of the organic material are the shear
modulus, m, and the bulk modulus, k. A value of 1.4GPa was reported by Jackson et al.,
(1988) for the shear modulus of the wet organic matrix; while 0.8GPa was reported by
Barthelat et al. (2006, 2007). In the calculations conducted here, the shear modulus was
taken to have a value of 1.0GPa between these two reported values. As stated earlier, the
elastic bulk modulus can play a significant role on the interface behavior of nacre due to
the confinement of the thin layer between relative rigid mineral tablets. SEM images
(Jackson et al., 1988) revealed that the organic material forms ligaments bridging mineral
tablets. Here, we assume that ligament formation reduces the hydrostatic stresses created
by the strong confinement in the thin interlayer. This is incorporated in the simulations
here reported by using a bulk modulus of 400MPa unless otherwise specified. This value
was identified by fitting the experimental data for uniaxial tension. The viscoplastic
material properties for the organic material are the reference shear rate _g0 ¼ 0:01 s�1, the
rate sensitivity m ¼ 0.1, reasonable for a rate sensitive material, and the yield strength
s ¼ 20MPa. The value of s was obtained by fitting the experimental tensile stress–strain
curve. We summarize the parameters characterizing the elasto-viscoplastic interface model
in Table 1. In addition, the strain rate was taken to be _� ¼ 0:1%s�1. Unless otherwise
stated, these values are used in the calculations conducted here.

6.4. Tablet climbing in the presence of surface waviness

As shown in Fig. 8, the surface topology of the interface can play a significant role on
the material response of the interlayer between tablets. In Figs. 8(a) and (c), the initial
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Fig. 8. Schematic configurations showing the deformation behavior of the organic interlayer during the relative

sliding between tablets for cases with and without surface waviness: (a) the initial configuration without waviness;

(b) the configuration under shear without waviness; (c) the initial configuration with waviness; (d) the

configuration under shear with waviness. Tablet climbing is displayed in the case with interface waviness. Due to

the constrained tensile response illustrated in (d), the interface material bridges the tablets through formation of

ligaments.

Table 1

Parameters characterizing the elasto-viscoplastic interface model of nacre

m (GPa) S (MPa) mR (MPa) H (nm) L _g0 (s�1) m

1.0 20.0 0.2 35 40.0 0.01 0.1
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configurations of two overlapped tablets connected by the interlayer material are
displayed. Comparing Figs. 8(b) and (d), it is seen that the deformation behavior of the
interface material during the relative sliding of tablets in the presence of waviness differs
significantly from that in the absence of waviness (flat interfaces). In the former, the
relative sliding between tablets leads to the simple interface shear as described in Fig. 8(b).
This is in direct contrast to the latter as shown in Fig. 8(d). In this case, interface shearing
is locally coupled to tension or compression. As a consequence of the strong confinement
of the thin interlayer, the tensile deformation is constrained. In fact, the organic interface
material can become very stiff as previously illustrated in Fig. 5. Experimentally, it has
been observed that the organic material develops ligaments (Jackson et al., 1988; Smith
et al., 1999) releasing high stress triaxiality and enhancing the toughness of nacre. The
ligaments contain a large number of protein fibrils which have been shown to be very
stretchable (Jackson et al., 1988; Smith et al., 1999). Crack bridging associated with
ligament elongation is believed to be an important mechanisms leading to the high level of
toughness of nacre (Sarikaya et al., 1990, 1992). Certainly, from the viewpoint of an
analysis of the local interface response, such effect is quite relevant.
In Fig. 9, the surface tractions acting on a nacre tablet sliding to the left are illustrated.

As shown in this plot, the force, Fc, arising from the compression of the tablets in the
presence of surface waviness, contributes to tablet climbing. This force must be balanced
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Fig. 9. Diagram illustrating the distribution of local tractions and forces on the surface of a sliding tablet. Both

the organic material and the surface waviness provide resistances to the relative sliding between tablets. The

interface material imposes constraints to both tablet sliding and tablet climbing. Fr and Fc denote the horizontal

and vertical forces, respectively acting on the top tablet as a result of local compression of the wavy interface.
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by the stretching of the organic material in other regions of the interface. Here, the organic
material plays a significant role in constraining tablet climbing, thereby increasing the
resistance to the overall deformation. The various contributions to tablet sliding resistance
are summarized in Fig. 9. These are the shear traction arising from the shearing of the
organic material at interface between tablets, and the force, Fr, arising from tablet
compression in the presence of waviness. The stretching of the organic material at the
tablet junctions provides additional resistance to tensile deformation. All these
contributions are responsible for the strength macroscopically exhibited by nacre.

The climbing of tablets was revealed experimentally by the transverse expansion
exhibited in the shear testing of nacre specimens (Barthelat et al., 2006, 2007). The
transverse expansion was also captured in the simulated shear response of the nacre RVE.
In Fig. 10, the curves of transverse strain-shear strain with varying Dcr are displayed and
compared to the experimental data. An increase in Dcr corresponds to an increased
interface compliance. The climbing of tablets starts as the compression of the organic
interlayer becomes significant. As shown in Fig. 10, the simulation predicts a progressive
increase in transverse strain with increasing shear strain beyond a threshold of about
2–3%. The experimental data shows a detectable transverse contraction followed by a
transverse expansion beyond a threshold shear strain. This is consistent with the
occurrence of significant tablet climbing as discussed in the previous paragraph. From this
discussion one can conclude that for Dcr ¼ 0.05H, the simulation results are in good
agreement with the experimental data in capturing sliding-induced dilation. This value is
therefore used in all the calculations discussed in subsequent sections.

6.5. Tensile response of nacre

6.5.1. Comparison with experimental data for uniaxial tension

Since nacre is expected to behave transversely isotropically we begin by loading the RVE
in the x, y and 451 directions, as illustrated by the inset shown in Fig. 11. In this figure, we
compare the predicted tensile response curves in these three directions with the
experimental data reported in Barthelat et al. (2006, 2007). It is noted that similar
response curves are obtained for these three loading directions. The small differences
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between them imply that the size of the RVE used in the simulations is not sufficiently
large to fully capture the transverse isotropy. However, due to the computational cost and
the small differences in the results, larger RVEs were not investigated.
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Fig. 12. Contour plots of the displacements (a) ux and (b) uy for the RVE of nacre subjected to uniaxial tension in

the x and y directions, respectively. The overall tensile strain is 0.72%.
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In Fig. 11, the initial yield behavior is characterized by a rounded shape. Such shape is
an outcome of the tablet overlap statistics. Also observed in Fig. 11 is the noticeable strain
hardening with increased tensile deformation. As discussed in Barthelat et al. (2006, 2007),
this plays a crucial role in preventing localized tensile deformation leading to relatively
large strains. Indeed, according to experiments and RVE simulations, the deformation of
nacre under uniaxial tension is quite uniform. In the calculations here discussed this is
illustrated in Figs. 12(a) and (b), which show contour plots of displacements, ux and uy, at
0.72% overall strain, for the nacre RVE loaded in the x and y directions, respectively. As
shown in Figs. 12, the displacement varies smoothly through the segmented layer. This is
directly related to the hardening behavior exhibited by nacre. The uniform deformation
behavior of the nacre RVE is further revealed by the distribution of the normal stress in the
x direction as shown in Fig. 13. In this contour plot, the load is shown to be well
distributed over the RVE consistent with tablet organization. At a strain of 0.72% the
average normal stress in the x-direction is about 80MPa. The plot shows local stresses
higher and lower than the average consistent with tablet overlap distribution.

In Fig. 9, we illustrate the effect of tablet climbing during tensile deformation and
associated out-of-plane normal stress distribution on the waved surfaces. Such distribution
of the out-of-plane normal stress, in the direction perpendicular to the tablet planes, is
plotted in Fig. 14. A salient feature of the out-of-plane stress distribution is that
compressive stresses emerge in many areas near tablet junctions, where significant interface
shearing occurs. The compressive stresses are generated when the top tablets climb over the
bottom ones in the presence of waviness. As shown in Fig. 14, tensile stresses typically
appear in the middle of the tables, which were denoted as core areas in Barthelat et al.
(2007). The tensile stresses arise from the stretching of the organic material to balance the
climbing contact forces. Noting the relatively large surface areas of the tablets, a small
tensile stress developed in the organic material can lead to strong constraints to tablet
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Fig. 13. Contour plot of the normal stress, rxx, for the RVE subjected to uniaxial tension in the x direction at

0.72% overall tensile strain.

Fig. 14. Contour plot of the out-of-plane normal stress, rzz, at 0.72% overall tensile strain. The compressive stress

near the tablet junctions where significant relative sliding occurs is evident.
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climbing. This is important for the strengthening of nacre. A similar plot as Fig. 14 was
also obtained using the non-hardening traction-separation law in Barthelat et al. (2006,
2007). This implies that the features revealed in Fig. 14 are mainly structure related.

6.5.2. Effects of the bulk modulus of the organic material on the tensile response

The constrained transverse expansion associated with the relative sliding between tablets
can induce significant stress triaxiality depending on the bulk modulus of the organic
material. In Fig. 15, the effect of the bulk modulus, k, on the tensile response of the nacre
RVE subjected to uniaxial tension in the x direction is illustrated. As shown in the plot, the
predicted hardening rate for the nacre RVE increases with increasing bulk modulus. This
implies that the constraint to tablet climbing becomes stronger with increasing bulk
modulus, thereby increasing the hardening rate. The lowest curve in Fig. 15 also
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corresponds to k ¼ 0. In this case, the effects of confinement on the thin interlayer can be
significantly reduced as previously discussed in relation to Fig. 5. Note that the change in
hardening rate is moderate taking into account that k has been varied over a decade.

6.5.3. Strain-rate dependence of the tensile response

The strain-rate dependence of nacre was experimentally revealed in Menig et al. (2000).
The present elasto-viscoplastic interface model accounts for the strain-rate dependence
through the power-law relationship as described by Eq. (24). Here, we do not attempt to
capture the physical basis for the rate-dependent behavior of nacre, but instead
demonstrate that the present interface model is capable of capturing rate-dependence.
We simulated the tensile responses of the nacre RVE at various strain rates _�=_g0 ¼ 0:1; 1:0
and 10. The predicted stress–strain curves are plotted in Fig. 16. In the corresponding
calculations, the RVE of nacre is subjected to uniaxial tension in the x direction with
l1ðtÞ ¼ expð_�tÞ. As shown in Fig. 16, the flow stresses is shown to increase with the increase
of the applied strain rates. The strain-rate dependence is totally attributed to the
viscoplastic deformation of the organic material. It is interesting to note that while only a
very small proportion of the biocomposite is organic material, it dominates the overall
mechanical behavior of nacre. This is attributed to the mechanism of load transfer in the
biocomposite. The organic material accommodates most of the inelastic deformation in
nacre through tablet shearing, dissipating energy through viscoplastic shearing and
stretching.

6.5.4. Loading cycles

To further demonstrate the predictive capability of the present interface model, we
simulated the mechanical behavior of nacre during consecutive loading, unloading and
reloading. In the simulations, the RVE was subjected to uniaxial tension in the x direction.
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At 0.4% overall strain, the RVE was unloaded until the macroscopic overall stress became
zero. Then the RVE was reloaded at the same strain rate to an overall strain of 0.8%.
Following this loading step, the RVE was unloaded again until the macroscopic stress was
completely released. Reloading of the RVE was performed following the unloading step.
Thereafter, two unloading–reloading cycles at different strain levels were obtained. As
shown in Fig. 17, hysteresis loops are predicted in the tensile stress–strain curve. We note
that hysteresis loops were also experimentally observed in tensile tests performed on nacre
specimens by Currey (1977). However, the underlying mechanisms can be better
understood through the simulation results here presented. The areas enclosed by the
hysteresis loops increase with increasing deformation, indicative of increased energy
dissipation during the unloading–reloading cycles. Fig. 17 shows that the unloading is not
purely elastic. This implies that significant viscoplastic deformation occurs in the interface
material during unloading. The elastic–plastic interactions between the organic matrix and
mineral tablets appear to prevent the unloading being fully elastic. The mineral tablets are
purely elastic tending to totally recover from deformation with unloading. However, the
recovering is subjected to constraints from the surrounding organic material which has
undergone significant viscoplastic deformation.
The tensile tests of nacre performed by Currey (1977) showed that, upon reloading a

plastically deformed specimen, the elastic modulus was less than the previously measured
elastic modulus. This was attributed to the accumulated damage in the organic material
with the increase of inelastic deformation. Damage in nacre is related to the formation of
ligaments and chain breakage in the organic material. In Fig. 17, damage effects on
decreasing the elastic modulus are not clearly revealed, although a rate-independent
interface damage model is used to model the interface material between tablet junctions.
This shows that the damage effects in the organic material between tablet planes need to be
properly accounted for in the elasto-viscoplatic interface model to capture the
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experimental measured decrease in elastic modulus with increasing deformation. In future
studies, a stress-state dependent damage variable could be included in the elasto-
viscoplastic interface model to simulate damage effects. Such effort is beyond the scope of
the present investigation.

6.5.5. Effects of the ratio of the contour length to the persistence length

The organic material in nacre is expected to become significantly stiff as biopolymer
chains approach full extension, thereby leading to a concave upward hardening behavior.
This is typical in the deformation of polymer materials. However, such hardening behavior
was not exhibited in the tensile tests of nacre. The reasons for such behavior are here
discussed. In Fig. 18, the predicted tensile response curves for the nacre RVE subjected to
uniaxial tension in the x direction are displayed for various values of L. The upward
hardening behavior is clearly predicted for L ¼ 3. Nonetheless, in this case the predicted
tensile response is significantly stiffer than the one experimentally measured. As L becomes
greater than 40, the predicted tensile response tends to be insensitive to the increase of L in
the strain range from 0% to 1.5%. Indeed, the tensile response for L greater than 40 differs
slightly from that without including back stress or the stiffening of polymer in the
modeling. Furthermore, the predicted tensile response in the absence of a back stress
agrees well with the experimentally obtained data as shown in Fig. 18. As discussed in
Section 6.3 in the context of protein pull-out experiments, the ratio of contour length to
persistence length, L, for proteins typically encountered in the organic material of nacre,
appears to be larger than 40. These results clearly show that polymer stiffening is not
required for the hardening of nacre in tension. This finding supports the phenomenological
cohesive law used in the simulations reported in Barthelat et al. (2007).
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The hardening behavior of nacre in tension turns out to be structure related. The
interface waviness-related climbing mechanism is believed to hold the key to such
hardening behavior. A crucial role that the organic material plays is to constrain the
climbing of tablets associated with inter-tablet shearing in the presence of surface waviness.
This can significantly increase the resistance to tablet sliding and strengthen the material.
The polymer contribution to the strengthening of nacre is indeed enhanced in the presence
of surface waviness in the sense that tablet climbing induces additional stretching of the
organic material in the direction normal to the interface.

7. Concluding remarks

In this paper, we derived and implemented an elasto-viscoplastic interface model to
simulate the constitutive behavior of the organic material in nacre. The developed interface
model accounts for the elasto-viscoplastic response of the organic material in a unified
manner. The single biopolymer chain behavior is characterized by the WLC model, which
is incorporated into the macroscopic constitutive description for the organic material
through the Arruda–Boyce 8-chain model. Compared with conventional interface models
in which the specified interface laws are phenomenological, the interface model presented
here is more physically motivated because it takes into account the relevant
micromechanisms controlling the interface material deformation. In this context, the
interface model was developed to characterize the mechanical behavior of the organic
material in nacre to gain insight into the mechanisms leading to the exceptional properties
exhibited by this material. However, it is emphasized that the model is versatile and
particularly suited for modeling the rate-dependent mechanical behavior of a wide range of
interface materials.
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The elasto-viscoplastic interface model was formulated within a finite-deformation
framework. This was necessary in order to account for the significant local shearing and
stretching undergone by the interface material. In solving the incremental constitutive
equations associated with the interface model, a fully implicit time-integration procedure
was implemented based on the conventional Newton–Raphson method. The local
Jacobian matrix for the Newton–Raphson scheme was calculated in closed form taking
into account the couplings of all constitutive equations. This resulted in a robust, stable,
efficient and accurate algorithm for the computations. While an approximate form of
element stiffness matrix was formulated for simplicity, the convergence rate for solving the
global equilibrium equations was found to be acceptable.

The capability of the elasto-viscoplastic interface model in predicting the material
response of nacre subjected to uniaxial tension is demonstrated in this paper. The finite
element simulations were performed on an RVE of nacre with periodic boundary
conditions imposed. The finite element model was generated from experimentally obtained
microstructural features. In particular, the surface topology at the interface was taken into
account in the simulations.

By means of the developed interface model, we show that the back stress arising from
the plastic stretch of the organic material plays a trivial role on the hardening behavior of
nacre during tension. This is reasonable noting the large locking stretch of polymeric fibrils
in the organic material as identified by SEM and AFM studies. Therefore, a structure-
related hardening mechanism (Barthelat et al., 2007) is further confirmed. The mechanism
is related to the local climbing of tablets in the presence of surface waviness. Both the
resistance to tablet sliding due to waviness and the constrained transverse expansion
leading to organic stretching appear to hold the key to the hardening behavior of nacre.

Modeling the material response in tension during consecutive loading, unloading and
reloading cycles revealed the existence of hysteresis loops. The size of the loops increases
with increasing plastic deformation. This is qualitatively consistent with experimental
observations in the testing of nacre. However, the experimentally observed damage effects
reflected by the decrease of reloading elastic modulus are not captured by the present
elasto-viscoplastic interface model. An augmented model with damage variables needs to
be developed to model damage in the organic interlayer and its effect on the overall
mechanical behavior of nacre.
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